Scenarios for the transition to chaos

Alessandro Torcini
alessandro.torcini@cnr.it

Istituto dei Sistemi Complessi - CNR - Firenze
Istituto Nazionale di Fisica Nucleare - Sezione di Firenze
Centro interdipartimentale di Studi sulle Dinamiche Complesse - CSDC - Firenze
Chaos in a Faucet

The dynamics is controlled by the Reynolds number

\[r = \frac{LU}{\nu} \]

- L size of the open hole of the faucet
- U average velocity of the water
- \(\nu \) viscosity of the fluid

- \(r < r_1 \) Laminar Motion \((V = \text{const.})\) – Fixed point
- \(r_1 < r < r_2 \) Periodic Oscillations in the velocity
- \(r_n < r < r_{n+1} \) Irregular motion, Turbulent regime

Which is the mechanism leading from laminar to turbulent regime?
Landau says (1944):
The turbulent behaviour in fluids with high Reynolds numbers is due to the superposition of a growing number of regular oscillations with different frequencies.

- $r < r_1 \ v(t) = U \quad \text{Fixed Point}$
- $r_1 < r < r_2 \ v(t) = U + A_1 \sin(\omega_1 t + \phi_1) \quad \text{Limit Cycle}$
- $r_2 < r < r_3 \ v(t) = U + A_1 \sin(\omega_1 t + \phi_1) + A_2 \sin(\omega_2 t + \phi_2) \quad \text{Torus } T^2$
- \ldots
- $r_n < r < r_{n+1} \ v(t) = U + \sum_{k=1}^{n} A_k \sin(\omega_k t + \phi_k) \quad \text{Torus } T^n$

$\omega_1, \omega_2, \ldots, \omega_n$ are incommensurable frequencies, i.e. they cannot be summed linearly with integer coefficients to give a zero result.

This scenario was considered valid until seventies, without experimental confirmations, and indeed it was wrong!
Ruelle and Takens (1971) however proved that a Torus T^3 is **structurally unstable** and therefore the Landau-Hopf scenario cannot go beyond a quasiperiodic motion with 2 frequencies.

Def Structurally Stable System

\[
\dot{x} = F_r(x)
\]

A property of this system is structurally stable is it is valid also for the perturbed system

\[
\dot{x} = F_r(x) + \delta F_r(x)
\]

where δF_r is a very small perturbation of the original system, but it is a generic (non ad hoc) perturbation.

In theory, it can exist a system F_r exhibiting the Landau-Hopf scenario, but a small modification will destroy it, apart very special perturbation. **This implies that experimentally it will be never observed.**

Ruelle-Takens predicted that Chaos can appear already in ODEs with three degrees of freedom.
The simplest model for the growth of population of organisms was suggested by Malthus in 1798 and reads as

\[
\dot{N}(t) = rN(t) \quad N(t) = N_0e^{rt}
\]

- \(N(t)\) is the population at time \(t\)
- \(r\) is the reproductive power of each individual

The model is too simple leading to exponential growth, but due to resources' limitation, above a critical value \(K\) carrying capacity the death rate is higher than birth rate (\(\dot{N} < 0\)).

Logistic equation by Verhulst

\[
\dot{N}(t) = rN(t) \left(1 - \frac{K}{N}\right)
\]

Two fixed points

- \(N^* = 0\) Unstable
- \(N^* = K\) Stable

The populations always approaches the carrying capacity **NO CHAOS**
Logistic Map

A continuous time model for populations is not the best choice, since populations grow or decrease from one generation \(n \) to the next \(n + 1 \)

\[
x_{n+1} = r x_n (1 - x_n) = f(x_n)
\]

- one dimensional non-invertible map \(\rightarrow \) Chaos
- the map is well defined for \(x \in [0 : 1] \) and \(r \in [0 : 4] \)

Linear Stability Analysis

- \(r < 1 \) An unique stable fixed point \(x^* = 0 \) (Population Extinction)
- \(1 < r < r_1 = 3 \) Two fixed points \(x^* = 0 \) — Unstable and \(x^* = 1 - \frac{1}{r} \) — Stable
- \(r_1 < r < r_2 = 3.448 \) The two fixed points are unstable, but the system exhibits a stable period-2 orbit
- \(r_k < r < r_{k+1} \) The two fixed points are unstable, but the system exhibits a stable period-\(2^k \) orbit
$r_1 = 3, r_2 \simeq 3.449 \ldots, r_3 \simeq 3.544 \ldots$

$$r_{\infty} = \lim_{n \to \infty} r_n = 3.569945 \ldots$$

The sequence of parameter values R_n for which one has super-stable periodic orbit of period $2n$ is also a series with the same limiting value $R_{\infty} = r_{\infty}$

For $r > r_{\infty} \rightarrow$ CHAOS

Universality properties of the logistic map (Feigenbaum 1975)

$$\frac{r_n - r_{n-1}}{r_{n+1} - r_n} = \frac{R_n - R_{n-1}}{R_{n+1} - R_n} \simeq \delta = 4.6692 \ldots$$

$$\frac{\Delta_n}{\Delta_{n+1}} \simeq -\alpha = -2.5029 \ldots$$

Δ_n is the distance among the two points of the super-stable orbit which are closer to $1/2$, the sign indicates that they lie on opposite sides with respect to $1/2$
The Feigenbaum’s costants are the same for any quadratic unimodal map.

For generic unimodal maps with non quadratic maximum (behaving like $|x - x_c|^z$ in proximity of the maximum) α and δ are again universal constants whose value depend on z.

Also ODEs can exhibit the period doubling scenario, with the same constants, this means that hidden in in the system there is a unimodal quadratic map.

This universality has been verified also experimentally in many many contexts, the first verification was done by Libchaber, Fauve, La-Roche in 1983 in Rayleigh-Benard convention, and they found $\delta \simeq 4.4$.

The Renormalization Group approach can be used to derive the Feigenbaum parameters analytically.

What happens now for $r_\infty < r < 4$?

We have chaotic behaviours but not only that...
Inverse Chaotic Cascade

- $r_0' < r < 4$ An unique chaotic attractor
- $r_1' < r < r_0'$ A two band chaotic attractor — A single band chaotic attractor is recovered for f^2
- $r_2' < r < r_1'$ A four band chaotic attractor — A single band chaotic attractor is recovered for f^4
- $\lim_{n \to \infty} r_n' = r_\infty$
- $\frac{r_n' - r_{n+1}'}{r_n' - r_n'} \to \delta$

The situation is more intricated a period three window is present.
At $r = r_{c3}$ a Period Three Orbit is born

A period doubling cascade is observabel for orbits of period 3×2^m

The system becomes chaotic and a chaotic band merging is now observable (3×2^m bands $\rightarrow 3 \times 2^{m-1}$ bands)

The chaos in three bands is observable

Finally at $r = r_{c3}$ an unique chaotic band is observable of size similar to that of the attractor just before r_{c3}

There are an infinite number of windows of arbitrarily high period within the chaotic range $r_\infty \leq r \leq 4$

These windows are dense in the chaotic range

The probability to choose at random a value of r in $[r_\infty, 4]$ and to observe chaos is not zero
Sarkovskii Theorem (1964)

Let us consider the following ordering of positive integers

\[3, 5, 7, \ldots, 2 \times 3, 2 \times 5, 2 \times 7, \ldots, 2^2 \times 3, 2^2 \times 5, 2^2 \times 7, \ldots, 2^n \times 3, 2^n \times 5, 2^n \times 7, \ldots, 2^n, \ldots, 2^3, 2^2, 2, 1\]

The theorem says that

Given a 1d continuous map \(f(x)\) **of the real line**, then **if** the map admits a periodic orbit of period \(p\), **then** the map admits also all the periodic orbits with period after \(p\) in the ordering above.

- If the map has an orbit of period \(p\), **which is not a power of 2**, then it has infinite number of periodic orbits
- If an orbit of **period three** exists then the system admits periodic orbit of any possible period
 - For the logistic map, when it admits the **stable period three orbit** all the other periodic orbits should exist, but they are all **unstable**
 - Li and Yorke (1975) have also shown that the existence of a period three orbit implies the existence of an uncountable set of orbits which remain **aperiodic** for ever (they term this **chaos**). But this set has **zero Lebesgue measure** and these orbits are **unstable**.
Lorenz Model

\[
\begin{align*}
\frac{dX}{dt} &= \sigma(Y - X) \\
\frac{dY}{dt} &= -XZ + rX - Y \\
\frac{dZ}{dt} &= XY - bZ
\end{align*}
\]

\(\sigma = 10, \ b = 8/3\)

Intermittency phenomena are observables in chemical and fluid systems: long \textit{laminar} (regular) behaviours are interrupted by chaotic \textit{bursting}

In the Lorenz model

- For \(r < r_c = 1.66.05\ldots\) one observe periodic motions
- For \(r > r_c\) bursting events are observable
- For \(r >>> r_c\) irregular oscillations dominate the dynamics
Poincaré Map

\[y(n+1) = f(y(n)) \quad \text{for} \quad x = 0, \quad y > 0 \]

- For \(r < r_c \) two intersections with the bisectrix are present – one stable and one unstable
- \(r = r_c \) the map is tangent to the bisectrix – **Tangent Bifurcation**
- For \(r > r_c \) a **channel** is formed where the orbits stay long periods nearby the bisectrix, then escape making irregular motion, the it is trapped again
- The duration of the **laminar periods** grows proportionally to \(1/\sqrt{(r - r_c)} \)
- Experimental evidences of intermittency have been reported by Bergé in 1980 for Rayleigh-Benard convection
References

Texts employed for the lectures

- **Ordre dans le chaos**

- **Chaos: from simple model to complex systems**
 M. Cencini, F. Cecconi, A. Vulpiani (World Scientific, Singapore, 2010)

Most popular texts

- **Chaos in Dynamical Systems**
 E. Ott (Cambridge University Press, 1993)

- **Nonlinear dynamics and Chaos**